GCE AS

B420U20-1A

PHYSICS – AS component 2

FRIDAY, 17 MAY 2019 – MORNING

Data Booklet

A clean copy of this booklet should be issued to candidates for their use during each AS component 2 Physics examination.

Centres are asked to issue this booklet to candidates at the start of the AS Physics course to enable them to become familiar with its contents and layout.

Values and Conversions			
Fundamental electronic charge	е	=	$1.60 \times 10^{-19} \text{ C}$
Mass of an electron	m_e	=	$9.11 imes 10^{-31}$ kg
Acceleration due to gravity at sea level	g	=	9·81 m s ^{−2}
Gravitational field strength at sea level	g	=	9·81 N kg ^{−1}
Planck constant	h	=	$6.63 imes 10^{-34} \mathrm{Js}$
Speed of light in vacuo	С	=	$3.00 \times 10^8 \text{ m s}^{-1}$
Stefan constant	σ	=	$5.67 \times 10^{-8} W m^{-2} K^{-4}$
Wien constant	W	=	$2.90 imes 10^{-3} m K$

 $1 \,\mathrm{eV} = 1.60 \times 10^{-19} \,\mathrm{J}$

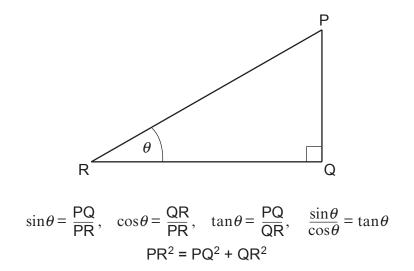
$\rho = \frac{m}{V}$				$I = \frac{\Delta Q}{\Delta t}$
v = u + at				I = nAve
$x = \frac{1}{2}(u+v)t$				$R = \frac{V}{I}$
$x = ut + \frac{1}{2}at^2$				$P = IV = I^2 R = \frac{V^2}{R}$
$v^2 = u^2 + 2ax$				$R = \frac{\rho l}{A}$
$\Sigma F = ma$				V = E - Ir
p = mv				$\frac{V}{V_{\text{total}}} \left[\text{or} \frac{V_{\text{OUT}}}{V_{\text{IN}}} \right] = \frac{R}{R_{\text{total}}}$
$W = Fx\cos\theta$				$T = \frac{1}{f}$
$\Delta E = mg\Delta h$				$c = f\lambda$
$E = \frac{1}{2}kx^2$				$\lambda = \frac{a\Delta y}{D}$
$E = \frac{1}{2}mv^2$				$d\sin\theta = n\lambda$
$Fx = \frac{1}{2}mv^2 - \frac{1}{2}mu^2$				$n = \frac{c}{v}$
$P = \frac{W}{t} = \frac{\Delta E}{t}$				$n_1 v_1 = n_2 v_2$
efficiency = $\frac{\text{useful ener}}{\text{total ener}}$	rgy transfe ergy input	r - × 1009	%	$n_1 \sin \theta_1 = n_2 \sin \theta_2$
F = kx				$n_1 \sin \theta_{\rm C} = n_2$
$\sigma = \frac{F}{A}$				$E_{\rm kmax} = hf - \phi$
$\varepsilon = \frac{\Delta l}{l}$				$p = \frac{h}{\lambda}$
$E = \frac{\sigma}{\varepsilon}$				
$W = \frac{1}{2}Fx$				
$\lambda_{\max} = \frac{W}{T}$				
$P = A\sigma T^4$				
lepto	ons	qua	irks	
particle electron (symbol) (e ⁻)	$\begin{array}{c} \text{electron} \\ \text{neutrino} \\ (v_e) \end{array}$	up (u)	down (d)	
charge (e) - 1	0	$+\frac{2}{3}$	$-\frac{1}{3}$	
lepton number 1	1	0	0	

Mathematical Information

SI multipliers

_		
Multiple	Prefix	Symbol
10 ⁻¹⁸	atto	а
10 ⁻¹⁵	femto	f
10 ⁻¹²	pico	р
10 ⁻⁹	nano	n
10 ⁻⁶	micro	μ
10 ⁻³	milli	m
10 ⁻²	centi	С

Multiple	Prefix	Symbol
10 ³	kilo	k
10 ⁶	mega	М
10 ⁹	giga	G
10 ¹²	tera	Т
10 ¹⁵	peta	Р
10 ¹⁸	exa	E
10 ²¹	zetta	Z


Areas and Volumes

Area of a circle = $\pi r^2 = \frac{\pi d^2}{4}$

Area of a triangle = $\frac{1}{2}$ base × height

Solid	Surface area	Volume
rectangular block	2(lh+hb+lb)	lbh
cylinder	$2\pi r (r+h)$	$\pi r^2 h$
sphere	$4\pi r^2$	$\frac{4}{3}\pi r^3$

Trigonometry

